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Review

“Data assimilation refers to three problems in time
series analysis. Given a time seri@s or possible a
continuous function of space and timéz, ¢t) which
may be noisy or incomplete, beginning with time

t = =1 and ending at = 0, the “present,” define
three problems:

» The prediction problem What will be in the
future?

» The filtering problem What is the best estimate
w Now, I.e., att = 07?

» The smoothing problem: What is the best
estimate ofv for the entire time series?
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Origins of Data Assimilation

Gauss and Legendre were interestedlanetary
orbits.

o T
e

e T

nese are specified by 6 parameters dtistal
ements

nree observations are necessary to determin

orbital elements.

o If

more than three observations are available

choose elements to minimize:

Z(predicted position — observed position)

2

This Is theleast squares method
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Variational Methods
Given

« Amodel:u; — Lu = £, possibly a linear equatic
that describes the evolution of small deviation:
from a first-guess solution.

- Chosen to mimic the “true” statel) assumed to

evolve according ta!” — Lu® = f + b for
some random functioh

 Estimated initial condition1(0) with random
errore

. Observationg = Hu®) + e,
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Variational Methods
Minimize the cost function:

J(u) = /(ut—Lu—f)TW1(ut—Lu—f)dt+

(u(0) — )" V" (u(0) —ug) +
(z — Hu)' R '(z — Hu)

The minimizer ofJ is the BLUE ofu if:
E(bbl) = W
E(eoeg) =V
E(eObSeT) = R

obs
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Variational Methods

» We begin withu a (possibly) vector-valued
function of time.

» This formulation generalizes naturally to
functions of time and space, in which case:
- L would be a partial differential operator

 The constraint on the initial condition woulc
be an integral

» There might be a constraint on the bounda
conditions.

We will derive all of the linearized methods from he
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The Variational Method

Without loss of generality, we can sg

= ug = 0. SO:

J(u) = /(ut — Lu)' W (u, — Lu)dt

TV u(0 +ZR

7=1

<uu>+ZR — Hju(t;))’

The cost function defines a positive definite bilin

form < -, - > ( Think dot product)
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Vectors and Functions

Consider a scalar valued linear functip(v), i.e., the
domain of f iIsR” and the range IR.

VvV = E vjej

SO
f¥) =Y vifle) =v-a

wherea; = f(e;).
... how iImagine that Is a function instead of a
vector.
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The Representer Method

Define thej"" representer-;:

<Tj,U >= HjU(t]‘)

for any admissible function

* The representaepresentshe measurement
functional in terms of the new inner product.

« This allows us to form an orthogonal
decomposition of the space of admissible
functions.
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I Loygoriadl - DeCUNpoation Ol
State Space

Write the minimizeru of the functional/, as:
N
”(AL — Z bj?"j - G
j=1

where the; are constants and

<r,G>=0,j=1,...,N
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Solution In Representer Space

The cost function then becomes:

N
J(U) = Zbibj<Ti,Tj>—|—<G,G>‘|‘

1,)=1

N
ZRj_l(zj — Zbi <1 m >)°
j=1 i

« We might as well pickiG = 0

» Picking nonzerd- doesn’t change the data mis
and can only increase the cost.
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The Representer Method

The original infinite dimensional problem is reduce
to finding a finite number of coefficients:

0J
a—bk — QZb] <7’j,7“]€ > —

J
QZRj_l(Zj— <7“j,Zbi’l“i >) <7 Tk >
17 )

Settingd.J/0b;, = 0 leads to:

Z<Tj,7“k> (ijj—l_z<riyrj>bizj) =3
9 )
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The Representer Method

Z<Tj,7“k> (ijj—l_z<r’iyrj>bizj) = ()
9 )

In matrix form. DefineR = diag(R;) and
M, ; =< r;,r; > therepresenter matrixThe solution
IS then defined by:

(M +R)b=z

whereb Is the vector of representer coefficients ar
IS the vector of observations.
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What Value oShould the Cosl
Function Beat Minimum?
At the minimum,

J = Zd(M+R) MM+ R)
(z—MM+R)"2)"R'(2— M(M+R)™!
(lots of algebra )
= 2/(M+R)™!

Soz should be a random variable with covariardet
R andJ is a random variable witly? distribution or
M degrees of freedom.
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Computing Representers

Schematically:

<u,v >~ (Mu,Mv);M = 8815 L

We want:
(Mu, Mr) = (u, M*Mr) = (u,9)
So solve:

Ma = 6
Mr = «
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Computing Representers

Begin with the simplest case: a linear, scalar ODE

u—au = F

F', u(0) unknown. First guesst’ = 0; u(0) =0
Given measurementg of the system at timefs

L
]

/OT(@'L — aw)W (0 — au)dt + w(0)V tu(0) +

Sy — ulty))*/R,
<uu>+ 3 (g — ult;)?/R;
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Computing Representers

The ;" representer is defined by
< 7rj,v >=v(t; fo (t —t;)v(t)dt
1. Calculate theepresenter adjomasz, such that:

T
/ a; (0 — av)dt
0

T
/ (—(jéj — Cl()éj)?}dt -+
0

ajvly; i (T) =0
T

= / 5(t — t;)udt:
0

2. Then solve: — ar = o;IWW; r(0) = V;(0)
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Summary of the Representer
M ethod

» The linear inverse problem is potentially a
minimization problem oveso dimensions

* In practice the observations determine only a
finite number of degrees of freedom

« A gquadratic cost function can define a useful
orthogonal decomposition of state space into |
components:

« The space spanned by the representers

« Its orthogonal complement, all members of
which areunobservablgi.e., they give
measurements with value zero, by
construction.
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Summary, continued
« The minimization can thus be carried out over
space of representers

A potentiallyoco dimensional problem is reduce
to a finite dimensional one

» The representers can (but need not be) calcul
explicitly

* The representers do not depend on the data
weights
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The Variational Approach

Calculate the first variatiof./ of the cost function/
and sevJ = 0 A slightly more general cost functior

J(u) = / //ut r1,t) — Lu)W !

(ug(xe,t) — Lu)dridxadt +

// 512‘1, ZCQ,O)dCEldCIZ‘Q—f—
—ZTR z

2

where z Is the Innovation vector, with componel
Zj — yj — Hju.
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The Variational Approach

As before, write:

A= (u — Lu)W™!

Foru — u+dusetdJ = J(u+du) — J(u) = O(du?)
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The Euler-L agrange Equations

_>\t —L*)\ — ZTR_lH

MT) = 0
u(x,0) = A(x,0)v(0)
u— Lu = WA

Write A = » _; a;a; where then; are therepresenter
adjoints
—Oéjt — L*Ozj — H]5(t — t])
a(T) = 0

— the representer solution: Bennett (1992, 200z
the tutorial at http://lom.asu.edu.



Variational Methods: Summary

* The simplest and most common variational
methods work by minimization of a quadratic
cost function.

 In most problems in ocean data assimilation,tl
state function that minimizes the mean square
data misft is not unigue

« The quadratic cost function can be used to de
a decompositon of state space into the space
spanned by the representers and its orthogon
complement

» By construction, elements orthogonal to the
representers have no effect on the model-date
misfits, and can therefore be neglected in mos
cases.
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Adaptation to Noniinear ProD-

lems

So far we have dealt witlmear problems. What to d
If the underlying model isonlinear?

1. Calculate solution to nonlinear model, with be:
estimate of IC, BC and forcing.

2. Calculate the solution to the linear inverse
problem for deviations from the nonlinear

solution

3. Add the resulting increments to IC, BC and
forcing to the original estimates

4. Goto 1., with new, IC, BC and forcing; iterate
(hopefully) to convergence
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The Filtering Problem

Given a time series;,, or possible a continuous
function of space and time(z, t) which may be
noisy or incomplete, beginning with time= —7" and
ending at = 0, the “present,” What Is the best
estimate ofu?

Given current observations, we wiibt revise our es
timate of past states.
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Filtering
Consider a single step of a prediction-analysis cyc

1. Given an initial conditioru, att = t,, predict the

new state1; at the next time;: u/ = Lu.

2. Given observationg at timet;, form an
improved estimat&? = u! + v, of the stata;

3. In most cases, choosg x y — Hu! , whereHu/
IS the predicted value of the observed quantity
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Flitering. Variational Formula-
tion
Cost function:

J = viPy'vo+ (vi — Lvo) ' Q H(vi — Lvy)
+(z — Hv)' R}z — Hvy)

z:y—Hu{
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Flitering. Variational Formula-
tion
Minimization of J by the representer method leads

vi = (LR L* + Q)H" [H(LR,L* + Q)H" + R] 'z

Recallv, is the correction to the first guess.
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Putting it all together

u; = u{ +
(LPyL* + Q)H” [H(LPL* + Q)H" + R]

This Is usually broken down into steps:

1. ul = Lu,
2. Pl = LP,L* + Q

|
3. K = P/HT [HP{HT+R}
4. uf :u{+K(y—Hu{)
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Statistics

We assume our model, given by:

U1 — Lllj
differs from the “truth” by some random errer

]H Lu + €

e is white in time with covariancE(eeT) = Q
The error in the state is given lay = uj, — ug

with covariancel, = E(eoeo) at timet = 0.
The observation error I1s white with mean zero and
covariance R.
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Filtering: Statistics

Then:
The state error covariance evolves according to:

P/ = E(eiel) = LE(egel ) L* + Q
The error In the corrected state should be smaller

the error in the original state. The covariance of th
error in the updated state Is:

P = (I — KH)P/
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The Filter Solution

Putting it all together:
1. u/ = Lu,
2. Pl = LP)L* + Q
3. K = P/HT [HP{HT + Rr
4. u =u] + K(y — Hul)
5. Pt = (] — KH)P/

This I1s theKalman Filter.
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Remarks

« This is one of many ways to derive the Kalmar
filter

» Implementation is straightforward, but potentic
very expensive

* Not necessary to write complex adjoint code

Ocean Data Assimilation — p.34



Remarks

» There are many natural generalizations and
simplifications of the KF:

 Theextended Kalman filteldse a nonlinear
model for the state evolution and linearizec
dynamics to calculate the evolution of the
error covariance.

 Use a static error covarianéeand eliminate
the repeated calculations.

» Use a collection of model runs with randornr
chosen initial conditions and forcing to
calculate an approximate covariance. This
theensemble Kalman filter

* Neglect errors outside of a low-dimensiona
subspace of the full state space. This Is the
reduced state space Kalman filtésgen e Assmiaion-pss



1 T1IC RCUICSCIILCl  IVICLNIOU. ATl
=Heells

A 2 layer model of Lake Kinneret

Vernieres et al.Ocean Modelling2006.
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Forward and Inverse WwWind
Fields

Left: Inverse estimate of mean afternoon wind fi
Right: Prior afternoon wind
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VWhat Does a Representer L OOK
Like?

Upper layer thickness, representer for the first ok
vation at station F. Solid line: -14.25m cQntouUl..._.s



Estimates of Lake Circulation

a), b) upper layer thickness, forward and inverse n
eIS' C)) d) Iower Iayer Ocean Data Assimilation — p.3¢



Noise and Nonlinearity

| saw under the sun that the race is not to the swift
nor the battle to the strong, ... , but time and chanc
happen to them alk-Ecclesiastes 9:11

For a more recent reference, see Jazwinski, 19,
Arnold, 1974.
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The Random Walk

o Startatz =0

* In every fixed interval of time\¢, move some
random distancéx

» TheAxz; are independent Gaussian random
variables with variance

 Intimel = NAt the total distance moved Is:

N
1=1

(W) =0
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The Random Walk

 Intimel’ = N At the total distance moved Is:

N
1=1
W) =0

 The mean square displacement is given by
(W?)y =N = vT /At
- If we choosev = o> At we get:
(W?) =0T
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The Random Walk

“W™" 1s the Wiener Process

EWW,) = E(W;— W+ W)Wy) fors <t

= E((W, = WOW,) + E(W,W,)

— 0'28

In general (W, W,) = min(t, s)o>.
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The Random Walk

Now consider a stationary random function

i (u(t + h})b — () us + h]i _ u(s))

= ;Q(ZE( (t)u(s)) — E(u(t)u(s + h)) —
E(u(t + h)u(s)))

_—1(0(75— s+h)—2C(t —s)+

O(t )

* Ot —s) = E(u(t)u(s))



The Random Walk
e —(C(t—s+h)—20(t—5)+C(t—s—h))/h? —
C"(t —s)ash — 0.
» More generally:
E(u'(s)u'(t)) = 55 B (u(s)u(t))

S

0 0 00 45 .

%%E(W(S)W(t)) = 5:5,° min(s,t)
0 L1 if t<s
N 830 0 if t>s
= o%6(t — s)

» by the usual formal identification of the derivat
of a step function with.
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White Noise

In general the power spectral density function of a
stochastic process is the Fourier transform of the
covariance function:

flw) = /OO e WOt + 7, t)dT

O

For “white noise,”C(t + 7,t) = 0°d(7) SO f(w) = o*
= constant. So white noise, like white light, contair
all frequencies at equal power.
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Stochastic Ditrterential Equa-
tions
ThelLangevin equation

i=—ar+ W
W Is a random walk with
E((W(t+ At) — W(t))?) = o*At
Lot — Lt + OéfL’tat — Wt+(5t I Wt
should lead formally to a meaningful limit:

dx + axdt = dW
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Stochastic Ditrterential Equa-
tions

but:
L+t — Lt o 4 Wt+5t — W,
ot a ot
[ Ltrot — L 2 02
5 t4-5t t _ 2.2, 9
( 5t ) T

so Langevin’s equation:

dx + axdt = dW

does not make sense as a classical ordinary differe
equation.
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Stochastic Ditrterential Equa-
tions
But weshouldbe able to make sense of it:

GO‘t\d—x +ar = AW
dt - dt
d ot L ot dW
%(6 r) = e o

t dW
_ 0)e ¢t —a(t—s)_d
T z(0)e +/O e o ds
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TheLangevin Equation

Gat\d—x+ozx _ v
dt - dt
d ot L oztdW
gl =y
! 11%%
_ 0 —at —a(t—s)_d
T z(0)e +/O e o ds

t t
/ e—oz(t—r)e—oz(t—s)E( aW dW
0

drd
0 drds)rs
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The Langevin Equation, cont’d

E(:CQ) _ —at
dW dW
/ / ( R )drds
_ —at)2+€—2at/ 0_262048d8
0
1 — 6—20475

= (z(0)e"*)* + o7 o



Stochastic  Ditterential  Equa-

tions
So instead of writing:
d_x N aw
at T
write:

dr; + axidt = dW;

as notation for

t t
T — Lo = —/ oxdt —l—/ dW,
to t
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TheLangevin Equation

» Here we will get away with assuming
Ji dW, = W (t) = W(0) ~ N(0,0%(t — ty)

« Stochastic differential equations (SDE’s) such
this must be modeled with special numerical
techniques, e.g.,

Liy1l = (1 — OzAt)ZIZ‘j + (At)l/QO'wj

wherew; ~ N(0,1) may be obtained from a
random number generator.
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INUITIE! 1Lal I cSaulliciit Ul UIc
L angevin Equation

» The variance of after V steps Is:

(1 —aAt)?Y —1

= A
Var(xzy) to 1 art)? 1

Compare to the solution obtained above:

—2at
20

» The difference equation converges/s— 0.

- The presence of th¢’ in the discretization

iIndicates that special numerical techniques ar
required for SDE'’s.

Var(zy) =0

t = NAt
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Stochastic Ditrterential Equa-
tions

» One correct way to discretize the Langevin
equation is:

Liy1l = (1 — OzAt)ZIZ‘j + (At)l/zawj

« A common error in dealing with SDE’s Is the
incorrect use ofAt instead of,/At as in:

11 = (1 — aAt)z; + Atow,

* |n order to deal with SDES in detail we need ta
re-invent calculus
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Summary

» We have explored solving the linear inverse
problem by the least squares method

* In variational form, the cost function gives a
natural orthogonal decomposition of space an
allows us to reduce the problem to manageabl
Size.

* The representer method is one way to derive t
Kalman filter.

 Fully general treatment of noisy nonlinear
problems requires that we re-invent calculus
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Final Thought

- Data assimilation is a highly technical subject

« When you understand the technical aspects,
are at théveginning, not the endf the subject.
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